MECÃNICA ESTRUTURAL DIMENSIONAL CATEGORIAL GRACELI.


SISTEMA DINÃMICO ESTRUTURAL TRANSFORMATIVO INTERATIVO DE FORÇAS FUNDAMENTAIS E ENERGIAS, E DO SISTEMA DIMENSIONAL CATEGORIAL DE GRACELI QUE DETERMINAM E REFERENCIAM O MUNDO DOS FENÔMENOS FÍSICOS, QUÍMICOS,  BIOLÓGICOS E PSÍQUICOS .


COMO FORMAS DE INTERAÇÕES ENTRE MOLÉCULAS, ESTRUTURA MOLECLAR, ONDAS, ENRGIAS, PARTÍCULAS, FÓTONS, MOMENTUM MAGNÉTICO, DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIAS,  NÚMEROS QUÂNTICOS E ESTADOS QUÂNTICOS. E OUTROS.





      EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS.


/

G* =  = [          ] ω   / T]  c [    [x,t] ]  = 

1 / G* =  = [          ] ω   / T]  c [    [x,t] ] [-1] = 


G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =]  é um operador cujo observável corresponde à  ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o  sistema GENERALIZADO GRACELI.


COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..




Difusão molecular de gases

Transporte de material em fluido estagnado ou através de linhas de fluxo de um fluido em fluxo laminar ocorre por difusão molecular. Duas compartimentos adjacentes, separados por partição contendo gases puros A e B podem ser previstos. Movimento aleatório de todas as moléculas de modo a que, após um período, moléculas são encontradas distante das suas posições originais. Se a partição é removida, algumas moléculas de A movem-se em direção à região ocupada por B, seu número depende do número de moléculas no ponto considerado. Simultaneamente, moléculas de B difundem-se para os regimes anteriormente ocupado por A puro.

Finalmente, a mistura completa ocorre. Antes deste ponto no tempo, uma variação gradual na concentração de A ocorre ao longo do eixo, designado x, o qual une os compartimentos originais. Esta variação, expressa matematicamente -dCA/dx, onde CA é a concentração de A. O sinal negativo surge porque a concentração de A diminui à medida que a distância x aumenta. Similarmente, a variação na concentração de gás B é -dCB/dx. A taxa de difusão de A, NA, depende do gradiente de concentração a a velocidade média com a qual as moléculas de A movem-se na direção x. Esta relação é expressa pela lei de Fick

/

G* =  = [          ] ω   / T]  c [    [x,t] ]  = 

onde D é a difusividade de A em B, proporcional à velocidade molecular média e, portanto, dependente da temperatura e de pressão dos gases. A taxa de difusão NA, é geralmente expressa como o número de moles em difusão através de da unidade de área na unidade de tempo. Tal como acontece com a equação básica de transferência de calor, indica que a taxa de força é diretamente proporcional à força motriz, que é o gradiente de concentração.

Esta equação básica é aplicada a diversas situações. Restringindo o debate exclusivamente para o estado de equilíbrio, em que nem dCA/dx ou dCB/dx altera-se com tempo, a contradifusão equimolecular é considerada primeiro.

Contradifusão equimolecular

Se nenhum fluxo massivo ocorre num elemento de comprimento dx (lembrando que trata-se de uma difusão, não de um deslocamento de massas de gás), as taxas de difusão de dois gases A e B devem ser iguais e opostas, o que é NA=NB.

pressão parcial de A altera-se por dPA na distância dx. Similarmente, a pressão parcial de B altera-se dPB. Como não existe diferença na pressão total através do elemento (nenhum fluxo massivo, embora possa haver uma alteração de densidade, exatamente pela alteração de composição), dPA/dx deve igualar-se a -dPB/dx. Para um gás ideal a pressão parcial é relacionada à concentração molar pela relação

/

G* =  = [          ] ω   / T]  c [    [x,t] ]  = 

onde nA é o número de moles de gás A em um volume V. Como a concentração molar CA é igual a nA/V portanto

/

G* =  = [          ] ω   / T]  c [    [x,t] ]  = 

Consequentemente, para o gás A,

/

G* =  = [          ] ω   / T]  c [    [x,t] ]  = 

onde DAB é a difusividade de A em B. Similarmente,

/

G* =  = [          ] ω   / T]  c [    [x,t] ]  = 

Portanto, permite que DAB=DBA=D. Se a pressão parcial de A em x1 é PA1 e x2 é PA2, pode-se integrar a equação acima,

/

G* =  = [          ] ω   / T]  c [    [x,t] ]  = 

Um equação similar pode ser derivada da contradifusão do gás B.




O inverso da condutividade térmica é a resistividade térmica, geralmente medida em kelvin-metros por watt (K-m/W). Ao lidar com uma quantidade conhecida de material, um objeto em específico, grandezas físicas importantes são a sua condutância térmica e sua propriedade recíproca, à resistência térmica, as quais podem ser facilmente determinadas a partir da geometria do objeto e da condutividade ou resistividade térmicas do material. Embora muito usadas em conjunto, não se deve contudo confundi-las, pois tais grandezas definem-se por diferentes relações constitutivas. A seguir, apresentamos algumas relevantes.

Condutância

Geralmente, a condutividade térmica é a quantidade de calor que passa por unidade de tempo através de uma prato circular de área  unitária (1 m2) e espessura  também unitária (1 m) quando a diferença de temperatura entre suas faces é unitária (1 K). Para um prato com condutividade térmica , a condutância térmica é dada por

 e é medida em W*K-1.

A condutividade e a condutância térmicas são quantidades que guardam entre si relações análogas as que guardam entre si as grandezas condutividade elétrica e condutância elétrica.

Coeficiente de calor e outras grandezas

Outra quantidade interessante relacionada à solução de problemas envolvendo condução térmica é o coeficiente de transferência de calor U, grandeza derivada da incorporação da espessura do material à sua característica de natureza intrínseca. Esta quantidade é normalmente utilizada quando tem-se um sistema composto pela justaposição de diversas camadas de diferentes materiais, cada qual com sua espessura própria, sendo definida de forma a permitir uma soma simples a fim de se obter um coeficiente global para o sistema. A última grandeza determina a quantidade de energia, sob a forma de calor, que passa por segundo através de cada metro quadrado de superfície, quando a diferença de temperatura entre as extremidades do sistema composto é de 1 K.

/

G* =  = [          ] ω   / T]  c [    [x,t] ]  = 

onde P é a potência térmica atrelada ao sistema.

A relação entre a condutividade térmica e o coeficiente de transferência de calor é dada por

.

/

G* =  = [          ] ω   / T]  c [    [x,t] ]  = 

A reciproca do coeficiente de transferência de calor é o isolamento térmico. Em resumo:

Condutância térmica , cuja unidade é o watt por kelvin (W/K), propriedade do objeto.

Resistência térmica , cuja unidade é o kelvin por watt (K/W); propriedade do objeto.

Coeficiente de transferência de calor , cuja unidade é o watt por kelvin e por metro quadrado (W/(K.m²)).

Isolação térmica , medida em kelvin metro quadrado por watt (K.m²/W).

Resistência térmica

Conforme definida acima, a resistência térmica de um sistema (objeto) ou seção reta desse define-se como a razão entre o comprimento da seção e a condutividade térmica do material do qual é feita.

Quando temos resistências térmicas em série, estas são adicionadas. Assim, quando há calor através de duas seções justapostas, cada um com uma resistência de 1 °C*W-1, a resistência total é de 2 °C*W-1. Um dos problemas mais comuns no design de engenharia envolve a seleção de um dissipador térmico com tamanho adequado para uma determinada fonte de calor. Trabalhar em unidades de resistência térmica simplifica o projeto. A seguinte fórmula pode ser usada para estimar o desempenho

/

G* =  = [          ] ω   / T]  c [    [x,t] ]  = 

onde  é a resistência térmica máxima do dissipador de calor à temperatura ambiente,  é a potência térmica e  é a resistência térmica da fonte de calor.

Transmissão

Um terceiro termo é a transmitância térmica, que incorpora a condutividade térmica de uma estrutura com a transferência de calor devido à convecção e a radiação. Esta é medida nas mesmas unidades da condutividade térmica e é conhecida como a condutibilidade térmica de compósito.

Comentários

Postagens mais visitadas deste blog